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Introduction

What types of environmental flows do we hope to analyze with this method?

• Highly non-linear, multi-scale flows in oceans, lakes, and rivers

• Flows that are well approximated by the variable density incompressible Navier-Stokes equations

• Examples: internal waves, coastal plumes, density currents in lakes, flows in branched estuarine

slough networks, flows past highly complex topography

What are the issues involved?

• Complex and often sparse geometries

• Large ranges in spatial and temporal scales

• Moving fronts and highly complex mixing zones

What do we hope to provide with such a tool?

• An enhanced ability to interpret and extend the results of field and laboratory studies

• A predictive tool for both engineering and science
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Variable Density Incompressible Navier-Stokes Equations

• Momentum balance

~ut + (~u · ∇)~u = −
∇p

ρ
+ ~g + ν∆~u

• Divergence free constraint

∇ · ~u = 0

• Density conservation

ρt + ~u · ∇ρ = 0

• Passive scalar transport

ct + ~u · ∇c = ∇ · (kc∇c) + Hc

Note that we do not employ Boussinesq or hydrostatic approximations.
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Solution Strategy: Temporal Discretization

We build on a classic second-order accurate projection method (Bell, Colella, Glaz,

JCP 1989). We split the momentum equations into three pieces:

• Hyperbolic: ~ut + (~u · ∇)~u = H

where we exactly enforce a divergence free state for the advective velocities, and compute the

advective term explicitly

• Parabolic: ~ut = ν∆~u + S

which we solve implicitly for a predictor velocity

• Elliptic: ∇ ·
1

ρ
∇p = ∇ · (−(~u · ∇)~u + ν∆~u)

which we solve implicitly for pressure, and subsequently correct the predictor velocity

To update the scalar equations we do similar hyperbolic and parabolic

decompositions.
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Solution Strategy: Spatial Discretization Using Embedded Boundaries (EB)

For the bulk of the flow, O(n3) cells in 3D, we compute on a regular Cartesian grid.

We use an embedded boundary description for the O(n2) (in 3D) control-volumes

that intersect the boundary.

Advantages of underlying rectangular grid:

• Grid generation is tractable, with a straightforward coupling to block-structured

adaptive mesh refinement (AMR)

• Good discretization technology, e.g. well-understood consistency theory for finite

differences, geometric multigrid for solvers.
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EB Finite-Volume Discretization Concepts

• Consider hyperbolic and elliptic conservation laws:

∂U
∂t

+ ∇ · ~F (U) = S and ∇ · ∇φ = ∇ · ~F = H

• Primary dependent variables approximate values at centers of Cartesian cells

• Divergence theorem over each control volume leads to a “finite volume” approximation for

∇ · ~F (fluxes are at centroids):

∇ · ~F ≈
1

κ∆xD

∫
∇ · ~Fdx =

1

κ∆x

∑
αs ~Fs · ~ns + αB

~F · ~nB ≡ D · ~F c

Away from boundaries, our method reduces to a standard conservative finite difference method

• Given κ, αs, αB , and ~nB on a fine grid, we can compute these on coarser grids without

reference to the original geometry.
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EB Finite-Volume Discretization Concepts, cont.

For the case of an elliptic conservation law, we need to compute ∇φ at face

centroids. Here is how we do this in 2D:

• First we compute face-centered gradients using centered differences

φx,i+1/2,j =
φi+1,j−φi,j

∆x

φx,i+1/2,j+1 =
φi+1,j+1−φi,j+1

∆x

• Then we linearly interpolate the gradient (or flux) to the face centroid, yielding φI
x,i+1/2,j

• In 3D we use a bilinear interpolation based on four face-centered gradients (fluxes)
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Why are Embedded Boundaries Important?

To accurately discretize our conservation laws all we need are the following

quantities: volume fractions, area fractions, centroids, boundary areas, and boundary

normals.

Above are two approximations to a circle: stair-step on left, and EB on right.

Stair-Step Embedded Boundary

Area Error O(h) O(h2)

Perimeter Error O(1) O(h2)

Boundary Normal Errors O(1) O(h2)
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Block-Structured Adaptive Mesh Refinement

x

y

In adaptive methods, one adjusts the computational effort locally to maintain a uniform level of

accuracy throughout the problem domain.

• Refined regions are organized into rectangular patches. Refinement is possible in both space

and time.

• AMR allows the simulation of a range of spatial and temporal scales. Capturing these ranges is

critical to accurately modeling multi-scale transport complexities such as boundaries, fronts,

and mixing zones that exist in natural environments.

• We maintain accuracy and strict conservation with embedded boundaries and AMR
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Finite-Volume Discretization Concepts

• Two requirements are necessary to maintain conservation and second-order accuracy with

AMR:

1) Match fluxes conservatively at coarse fine interfaces (this leads to a refluxing step for

the coarse levels)

2) Use quadratic interpolation to provide ghost cell values for points in the stencil

extending outside of the grids at that level

x x

x x

xx x x x

x xx
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Grid Generation for Embedded Boundaries

• Three example irregular cells are shown below. Green curves indicate the intersection of the

exact boundary with a Cartesian cell. We approximate face intersections using quadratic

interpolants.

• EB’s are “water tight” by construction, i.e. if two control-volumes share a face, they both have

the same area fraction for that face.

• Unlike typical discretization methods, the EB control volumes naturally fit within easily

parallelized disjoint block data structures.

• Permits dynamic coarsening and refinement of highly complex geometry as a simulation

progresses.
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EB Coarsening

White regions represent individual control volumes. Green is the exact geometry.
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EB Coarsening

Note: We have some cells with more than one control volume per cell.
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EB Grid Generation Examples

• Embedded boundary description of San Francisco Bay (using USGS DEM data)
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EB Grid Generation Examples

• Embedded boundary description of San Francisco Bay (using USGS DEM data)
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EB AMR Grid Generation Examples

• San Francisco Bay with AMR (using USGS DEM data)
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Results: 2D Convergence Study

• Flow is inside a 1 m square tank, with a cylinder of diameter 0.1m at (0.15,0.5)

• The initial velocity field is the divergence free part of a rigid rotation (flow is

counter-clockwise)

Above is a plot of the initial conditions. The colors indicate vertical velocity (red

is up, blue is down)

• The Re = 100 for this problem.

• We initialize our density field as ρ = 1000 + 30y (linear, with heavy on top)
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Results: 2D Convergence Study

• For the convergence study, we solve this problem on 3 different grid hierarchies. We discretize

the coarsest level of each hierarchy with 8x8, 16x16, and 32x32 cells.

• For each run we use 4 levels of AMR with a refinement ratio of 4 between levels

• In the table we present norms of the solution error, and our convergence rate.

Base Grids 8-16 Rate 16-32

L1 Norm of V Velocity Error 5.73e-3 2.02 1.42e-3

L2 Norm of V Velocity Error 7.68e-3 2.01 1.91e-3

L1 Norm of Scalar Error 1.24e-2 2.04 3.03e-3

L2 Norm of Scalar Error 1.64e-2 1.98 4.16e-3

19



Results: 3D Convergence Study

• Below is a 3D single level convergence study for a constant density, Re = 100, rotational flow

past a complex geometry:

Base Grids 16-32 Rate 32-64

L1 Norm of U Velocity Error 1.69e-2 2.32 3.39e-3

L2 Norm of U Velocity Error 5.28e-2 1.76 1.55e-2

L1 Norm of W Velocity Error 1.48e-2 2.29 3.03e-3

L2 Norm of W Velocity Error 4.69e-2 1.83 1.32e-2
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Results: Breaking Internal Waves on a Slope

• Flow is inside a 0.5m tall, by 3m wide tank, with an 8:1 slope starting 1m from

the left side

• Below left is the initial density distribution (blue is light fluid, red is heavy fluid),

below right is the initial conditions for a passive scalar

• Density ratio of light fluid to heavy fluid is 1000/1030, and our pycnocline is a

step-function. The pycnocline is perturbed on the left side of the tank.

• Thanks to Prof. Fringer for this test problem
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Breaking Internal Wave on a Slope (Density left, Scalar right)
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Results: Breaking Internal Waves on a Slope

• Since most pycnoclines are not step-functions, what happens if our initial

pycnocline is smoothed over 20 percent of the depth?
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Results: Simulation of flow past a cylinder with AMR

• Flow is inside a 1m square tank, with a cylinder of diameter 0.1m placed at

(0.25,0.25)

• We initialize the flow with a vortex patch in the center of the domain, see below

left. The Re = 100 for this flow. We initialize a passive scalar, see below right.

• We discretize the domain with a base grid of 64x64 cells, and refine 2 additional

levels to track vorticity
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Simulation of flow past a cylinder with AMR

• Vorticity (which we track with AMR):

• Passive Scalar:
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Results: Lock-Exchange with AMR

• Flow is inside a 0.5m tall, by 3m wide tank.

• On the left side of the tank we start with light water, on the right is heavy

water. The density ratio of light fluid to heavy fluid is 1000/1030.

• On the following lock-exchange slides, the lower figure is a zoom in on the

center region of the tank.
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Lock-Exchange: Why is AMR important?
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Lock-Exchange: Why is AMR important?
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Lock-Exchange: Why is AMR important?
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Lock-Exchange: Why is AMR important?

Answer: We can add computational effort only where we need it!
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Results: Simulation of flow past a sphere with AMR

• Flow is inside a 1m cubed tank, with a sphere of diameter 0.1m placed at

(0.25,0.25,0.5)

• We initialize the flow with a vortex patch in the center of the domain, see below

left for z-vorticity iso-surfaces. The Re = 100 for this flow. We initialize a

passive scalar, see below right for an iso-surface.
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Conclusions and Future Work

• We now have a second-order accurate incompressible Navier-Stokes code

that has been validated in 2D and 3D.

• Our AMR version is showing reasonable results and is under review to

ensure second-order accuracy.

• Future Work:

– Free Surface Tracking

– LES Turbulence Closure

– Field Scale Applications

– Fourth-Order Accuracy (see my upcoming JCP paper with P. Colella).
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